
b 3 529 SIPNULRTION OF LR*tGE NETWORKS OF PROCESSORS BY SULLEN 1Iv~
ONES(U NMRWU UNIV COLLEGE PR CENTE FOR

UNCLSSIIEDRUTOIWATION RESERRCH S KC INASCR ET AL. NAY 64

E hRSIFE RRT-6 ROR-R94959F462-2I-2 /OL/1 M

j-.
--

11111L2 1..6J 2jIII1.11111 1. a. 10 IIILU

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

...

II

AMR.OSTR - r)4 58 1'-

CAR-TR-63 F49620-83-C-0082
CS-TR-1401 May 1984

SI:.ULATI CF LARGE NETWORKS OF PROCESSORS

N BY SMALLER ONES

nS.K. Bhaskar

Azriel Rosenfeld

(Cmnter for Automation Researcn
University of Maryland
College Park, MD 20742

Angela Y. Wu

I Dept. of Statistics and Computer Science
American University
Washington, DC 20016

COMPUTER VISION LABORATORY
j a-

CENTER FOR AUTOMATION RESEARCH

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

C> 20742

Li.I

r84 07 24 048

. I m -- - i I i l l i i e . . .

ECURITY CLASSIFICATION OF THIS P,%GE A I4,
REPORT DOCUMENTATION PAGE

Is REPORT SE,.%JRITY CLASSIFICATION It) RESTRICTIVE MASK.INUS

I rVrJ.33 IF TE D
2. SECURITY CLASSIFICATION AUTHORITY 3 OISTRIBLITION/AVAILAIIILITY OF REPORT

____________________________________Approved for public relcasoc;dr.o .
2b. DECLASSIFICATION,OOWNGRAOING SCHEDULE unlimi ted.

4, PERFORMING ORGANIZATION REPORT NUMBERtS) 5. MONITORING ORGANIZATION REPORT NUMBER(Si

AFOSR.TR. 24 0 ri5 8
-a. NAME OF PERFORMING. ORGANIZATION 6b OFFICE SYMBOL 7&. NAME OF MONITORING ORGANIZATION

University of *N-arylaaad (If 4pplicGbI.'I Air For-c- Offic:- of Scicotili c ca'

uADDRESS fCity. State and 1t (i~del 7b ADDRESS (City. State and ZIP C,,deI
fu.er:r Atralo. Directorate of No',thc7natical n":;.'

College Park fi 274 Sciences, Boiling AFB DC 20332

I. NAME OF FUNDINGiSPONSORiNG 8~b. OFFICE SYMBOL 9. PROCUREmENT INSTRUMENT IDENTIFICATION NUMEEP
ORGANIZATION (if applicable)

AFOSR J N:. 749620-83-C-008)
de. ADDRESS City. State anld ZIP COde I 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK LNiT

*Bolling AFB DC 20332 ELIEME NT NO. NO. NO. NO

-1. TITLE dinciude Security Clssification) 5 1 2'2'4A

T UATION OF LktRGE NETWORKS OF PROCESSO-RS BY .'ALLER ONES.,
PERSONAL AUTHOR IS)

S..'. Bhaskar, A. Rosenfeld, anid A.Y. kiu
aTYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. M

1
o.. Day) 15. PAGE COUNT

L'echnicai FROM~ TO __ AY B4 24

6-. SUPPLEMENTARY NOTATION

COSATI COOES JIB. SUBJECT TERMS (Continue on reverse if neceuary and identify by block number,

IELQ GROUP SUB GR. Parallel processing; multiproce :.sing; proce ssor nok

I ~iInterproces sor commnrication.

ABSTRACT Contilnue on reverse ~neeesawary and identity by block numberi

'Thin paper considers the problem of sir,latlng a large r:1r f f u:ccr..' .. 7112rI
ot of p procescors. The approach talon , :L to parti tion th - c;-~ _ '* p

*and to assign each subset to a processor for na-mlation1. In orzinr,. ucio--
* 1ads of th- processors, the) uizu.- of N, N should be a:.: e-qual a-: p'-):,

t o M, 4 lzc (a.i -uallze the amout pasiEsac' ri,.
22paii% of n~odes that are nteighbors in- T! but belIong todlie

:,and ar equal) aL; po-;ni-ble. The authors di-nnuso. t he gener-a' p -'<b-: pi
gPraph N co as to a) n9 thcene cri1 (,,,ia . andj al uni'r~: par, C,.
nrg a tree.

-1SR~fUTION AVA LAB.LiTy .3F Ab',-RAC! 21 ABSTRAr SEI,(:1,T LLAS.. 2'

*:LASStaEDUNLIMITE0 17. SAME AS RPT Z: TIC USERS 2 K AsT 7

NAIAE OF RESPONSIBLE tNr:'ZA 121 TELEPHONE Nk.MiJ4 tI, V ~ ,

_0 FORM 1473,83 APR EDITION OF 1 jAN 73 I OBSOL111EE

84 07 24 048 S...4~ 1V~ICT **:

" 4

CAR-TR-63 F49620-83-C-0082
CS-TR-1401 May 1984

SIMULATION OF LARGE NETWORKS OF PROCESSORS
BY SMALLER ONES
S.K. Bhaskar

Azriel Rosenfeld

Center for Automation Research
University of Maryland 4
College Park, MD 20742

Angela Y. Wu

Dept. of Statistics and Computer Science& .
American University ,

Washington, DC 20016 0,4

ABSTRACT

,This paper considers the problem of simulating a large
networ N of processors using a small set of p processors.
The approach taken is to partition the nodes of N into p sub- 0
sets 11,..,N and to assign each subset to a processor for
simulation. n order to equalize the workloads of the proces-
sors, the sizes of.Nl,..., &j should be as equal as possible;
and in order to minimize (aid equalize) the amount of message
passing between the processors, the number of pairs of nodes
that are neighbors in N but belong to different subsets should S
be as small (and as equal) as possible. We discuss the general
problem of partitioning a graph N so as to satisfy these cri-
teria, and also consider the particular case of partitioning a
tree.

Research sponsored by the Air Force Office of Scientific Research
(AFSC), under Contract F49620-83-C-0082. The United States
Government is authorized to reproduce and distribute reprints S
for governmental purposes notwithstanding any copyright notation
hereon. The help of Janet Salzman in typing this report is grate-
fully acknowledged.

1. Introduction

There is a growing interest in the study (and eventually,

the development) of large networks of processors for application

to various computational tasks [i]. For example, it has long
I

been recognized [2] that image processing can be done very

efficiently ona mesh-connected network of the same size as the

image - i.e., for an n by n digital image one should use an

n by n processor array, one processor per pixel.

Cost considerations limit the size of the networks that

can be constructed in practice. For example, the largest

mesh-connected network yet constructed, NASA's Massively

Parallel Processor [3], is an array of 128 by 128 processors;

but most images are larger than this, typically 512 by 512

or more.

This paper addresses the problem of simulating a large

network N of processors when only a small number p of processors

are actually available. We shall assume, for simplicity, that

the available processors can be connected in any desired way.

Intuitively, it seems reasonable to do the simulation by parti-

tioning the nodes of N into p sets NJ,...,N p , and let each pro-

cessor simulate one of the sets. In Section 2 we shall define

criteria that such a partition should satisfy in order to mini-

mize the computation time required for the simulation. Section

3 considers algorithms for partitioning an arbitrary graph based

on such criteria, Section 4 considers the special case of

partitioning a tree, and Section 5 gives some further special

results for the case of a complete binary tree.

2. Graph partitioning

The general graph partitioning problem can be formulated as

follows: We are given a graph G (with node set N) and a set of

p processors, which we can interconnect in any desired way. We

want to partition N into p subsets NJ,...,Np, and assign each

set to one of the processors. We must also interconnect the

processors so that each of them can easily obtain information

from the neighbors of its nodes in G.

In defining the partition, we want to make the amounts of

computation done by the processors as equal as possible, in order

to minimize the total computation time (if they were very un-

equal, all the processors would have to wait for the slowest one).

Since each processor must simulate its nodes one at a time, this

suggests that the numbers of nodes assigned to the processors

should be as equal as possible. (This ignores the fact that the

simulation may not take the same time for all nodes; for example,

it may take longer for a node of high degree than for a node of

low degree, since a high-degree node has more inputs. To take

this into account, one could require that the sums of the degrees

of the nodes, rather than the number of nodes, assigned to each

processor to be as equal as possible. For simplicity, however,

we shall use simple equalization of the numbers of nodes in our

examples.)

We also want to minimize interprocessor communication, and

to equalize the amounts of information that a processor may need

to receive from the other processors in order to do the simulation,

since a processor can receive only one message at a time.

Let us assume, for simplicity, that to simulate a node of G

we only need information from the neighbors (in G) of that

node. Then, we would like to define the partition so as to

minimize the number of neighbors (in G) of the nodes in each

set Ni that lie in other sets Nj, and to make these numbers

as equal as possible. Moreover, to avoid the need for relay-

ing information through several processors (which might lead

to queueing delays), we shall assume that processors i and j

are directly connected if any node in Ni is a neighbor of any

node in N.. Thus the resulting processor network G' is a con-J

densation of the graph G; each node i of G' corresponds to a set

Ni of nodes of G, and nodes i,j of G' are joined by an arc iff

some node in Ni was joined by an arc of G to some node in N .

Before discussing how to construct such condensations for

arbitrary graphs, let us briefly consider the case where G is

a mesh-connected array. Here, to minimize the number of neigh-

bors of Ni that lie in N. for each pair of node sets (i~j),

we want the Ni's to be"compact" blocks of nodes that contain

as few border nodes (=nodes with neighbors not in Ni) as possi-

ble. It is not hard to see [4] that square blocks of nodes

are best for this purpose - i.e., they have the fewest border

nodes for a given area. Thus to efficiently simulate a large

mesh-connected array, we should condense it by dividing it into

square blocks of equal size; note that such a condensation is

itself a mesh-connected array. Incidentally, it makes little

difference whether we equalize the numbers of nodes in the

blocks or the sum of the degrees of these nodes, since most of

the nodes in an array (i.e., all but the nodes on its border)

have the same degree.

• /7

.

3. Arbitrary graphs

The problem of graph condensation so as to minimize a given

cost function was solved in a general setting in [5]. The

method used was to apply dynamic programming to solve a recur-

sion equation expressing the changes in cost variables arising

from the addition of a single node to one of the previously com-

puted partitions. The complexity of the solution grows asymp-

totically as xx where x is a function of the degree of the graph. S

However, in the particular case of partitioning trees, a linear

time solution (linear in the number of nodes in the tree) was ob-

tained. It is therefore of interest to investigate whether there

exist heuristic methods which produce acceptable solutions.

In this section, we first consider a method of graph parti-

tioning designed to minimize the number of "outlinks" between the

subsets, i.e. the number of node pairs (a,b) such that (a,b) is

an arc of G but a and b belong to different subsets of the parti-

tion. Our approach is based on the same principles as Huffman

coding [6], but using the degrees of the vertices. The idea is

to form groups around vertices of large degrees, repeatedly

"merging" other vertices together until the number of vertices

remaining equals the number of host vertices. The criterion used

to pick two vertices to be merged is derived informally as follows: S
Suppose that A is a vertex with large degree n, and suppose

we merge A with some partition Ni (of which A is a neighbor).

In so doing, we are adding n-l to the number of inputs that the

processor handling Ni must deal with. Thus, whenever we merge,

. - --'=' - ~ ~~ ~ ~~. I I I

we should merge vertices of the least possible degrees. Also,

to preserve connectedness inside components we insist that

the vertices to be merged be adjacent.

The definition of a merge between two vertices of a graph

G is as follows:

Function merge (G,u,v);

(* returns a graph in which vertices u and v of G are merged *)

begin

E' {(w,u) I (w,u) E E(G)} U {(w,v) I (w,v) E E(G)}

V' 4 {w I (w,u) E E(G)} U {w (w,v) E E(G)}

Ell {([uv],w) I w E V'}

return (V(G) - {u,v} + {[uv]}, E(G) - E' + E")

end

The partitioning algorithm based on merging pairs of least

degree is then as follows:

begin {p = # processors available; G=(V,E) is the input graph}

G' - G;

while IV(G')I >p do

b find the lexicographically smallest pair (deg(u),

deg(v)) where uv E E(G);

G' - merge (G',u,v)

end

end.

The partition found in this way is not necessarily unique

if ties are resolved arbitrarily during the search for the

smallest pair (deg(u), deg(v)). The following is an example

of applying the partitioning algorithm to a graph G for p=3:

5 5 +

'ic 56 PIC

L3.& LI.5] 36]

Thus the final partition is [2,4,7],[l,3],[3,6]. In this par-

tition, the nodes of [2,4,7] have 4 outlinks; those of [1,5]

have 5; and those of (3,61 have 5. Thus the numbers of out-

links have been (approximately) equalized.

A defect of this algorithm is that it does not require the

sets Ni to contain approximately equal numbers of nodes. For

example, if p=4 and G is a complete binary tree of height 3,

the following partition can be obtained:

353 / 3 3I

iI~ 1 1 i

5 3

To obtain a more equitable distribution of nodes, we must also

take into account the number of nodes in the sets N. We can

do this by using a linear combination of weight (=number of

nodes in Ni) and degree (of the node Ni) as the criterion for

selecting nodes to be merged.

Thus, for each node v, we have

f(v) = a.weight(v) + 8 .degree(v)

and we can pick the constants a and P to "tune" the rtition.

For the same tree considered above, the followir parti-

tions, in all of which the penalty is 2, can be obt . . :

aA

ukP 4 &-i,(= +. o(d3c-15(1-I 4

I

It should be emphasized that the partitions obtained in this way

are dependent on the order in which nodes with equal f-values

are chosen. Thus, for highly syrmetric structures, wildly vary-

ing partitions can be obtained.

The time complexity of the algorithm is determined as follows:

Assume that the graph has n nodes. Thus there are n f-values

and the least is found in O(n) time. The loop is executed (n-p)

times (assuming np) giving an overall complexity of (n-p) O(n)

which is O(n 2) for fixed p.

It has been found empirically that having P>a usually results

in components with very uneven distributions of nodes per compo-

nent. This is because it is possible for a component with a

large number of nodes to have small degree (as in the second example

above). Such a node will then become a candidate for further

merging, adding to its already large size. Having P=O will

merge nodes based on weight alone, without regard for the degrees

of the nodes being merged. This will lead to large numbers of

outlinks. Thus it is best to have a>p, f O. It has also been

found, empirically, that as long as c>p, increasing the value of

a does not have much effect. An intuitive explanation for this

may be given as follows: Suppose that {vl,v 2 ,... ,vn} is the set

of nodes at some stage, and that vi and vj are selected for merg-

ing. This means that (f(vi),f(vj)) (or (f(v.),f(vi))] is the

smallest, lexicographically - that is, (a.w,ight(vi)+3..deg(vi),

..weight(v)+PI.deg(v.) is the smallest. Since a is "large",

the small f-value of vi (or v.) must be due to a "small" value

of weight (vi) (or weight (v.)). If we now increase a to a+k

(k>O), the set of f-values becomes {f(vl)+k.weight(vl),...,f(vn)+

k.weight(v)}.If vi and v. were picked with the old value of a,

because of the small weight of vi the increase caused by adding

4 k.weight (v.) is usually not enough to keep vi and v. from still

having the smallest f-values.

4. Trees

For trees, a solution to the partitioning problem is given

in [51 which is linear in the number of nodes in the tree. In-

teger weights are attached to both nodes and arcs of the tree,

and the solution finds a partition in which the weight of each

component is less than or equal to a parameter, w, and the sum

of the weights on the arcs that form outlinks is minimal.

For example, consider the tree

4 6

Here, all nodes have unit weight, w=3, and the numbers along-

side the arcs are their weights. In this case, the following

optimal partition is obtained:

6C

where we have 5 components, each with _3 nodes. The cost of

the outlinks is 1+2+4+1=8, and this is the least possible value.

However, the distribution of nodes per component is not even.

For example, if we consider the tree

.4 I I l I

D

with unit weights on the arcs and nodes and with w=3, the solu-

tion is optimal in terms of outlinks, but has an uneven distri- D

bution of nodes. To achieve a more even distribution of nodes

per component, the tree nodes must be weighted differently so

that clusters are broken up. In practice, it is difficult to 5

determine just what this weighting should be.

If we do not use weightings, then any partition of a tree

into p connected components has the same number of outlinks, D

namely p-l. To see this, suppose that a tree G having n nodes

is partitioned into p connected components; thus each component

is itself a tree. If component Ni has ni nodes, li:p, we must 5

have Z n. = n. The total number of arcs internal to the
li:ip I

components is Z (ni-l) = n-p. Since the total number of
lfiip 0

arcs in the tree G is n-l, there must be (n-l)-(n-p)=p-i arcs

not internal to any component. These are just the arcs connect-

ing together the p components. Thus the total number of out-

links is p-l.

In many cases, it is not optimal to insist on connected

components in a partition of a tree. For example, an optimal

partition of the tree shown below into three components results

in one of the components being disconnected. It can be veri-

fied that in any partition of this tree into subgraphs having

2,2, and 3 nodes, at least one of the subgraphs must be dis-

connected. .I
D

5. Complete binary trees

In this section we consider methods of partitioning complete

binary trees. We recall that a complete binary tree has 2 M-

nodes for some m: 1 root node, 2 nodes at the level below the

root, 4 nodes at the level below that, ... , 2k nodes k levels

below the root, ... , and 2m - leaf nodes.

We saw in Section 4 that any partition of a tree into p

connected parts has p-1 outlinks. Thus the figure of merit of

such a partition depends only on how nearly equal are the

numbers of nodes in the parts; the best partition would be one

* in which all the parts are of the same size. We now show that

for a complete binary tree, there is only one way of partition-

ing it into connected parts that are all of the same size.

Proposition. Suppose that a complete binary tree is partitioned

into p connected parts all of the same size. Then the parts are

all complete binary trees, say of size 2h_-1 , and their roots

are at levels O,h,2h,... below the root of the given tree. In

particular, we must have p = 1+2 h+2 2h+...2 ; h divides m,

and 2M-l=p(2h-1).

Proof: Let A be a leaf of the tree, e.g., as shown (partially)

below:

0

E

A B C D

If {A} is a part, the parts are all singletons and the propo-

sition is trivially true with h=l. If not, the part NA con-

taining A must also contain E, since E is the only node adjacent

to A. But then NA must also contain B, since otherwise B could

not belong to a connected part having at least two nodes. If

NA = {A,B,E}, it is a complete binary tree having three nodes

and the parts all contain three nodes. A similar argument now

shows that the part containing C must be {C,D,F}, and similarly

each pair of leaves having a common father must constitute a

part. If we remove these parts, what remains is a complete bi-

nary tree of height m-2, and we can repeat the argument for that

tree; we conclude ultimately that the parts are all complete

binary trees having three nodes (i.e., h=2), and that m is even

(i.e., h divides m).

Suppose next that NA has more than three nodes; then it

must contain G. But then fC,D,F} cannot belong to a connected

part having more than three nodes; thus these nodes too must

belong to NA, so that it has at least seven nodes. If it has

exactly seven, it is a complete binary tree having seven nodes

{A,B,C,D,E,F,G}, and all the parts have seven nodes. An argu-

ment analogous to that in the previous paragraph then shows

that all the parts are complete binary trees having seven nodes

(i.e., h=3), and that m is a multiple of 3.

We can repeat this reasoning to show that if NA has more than

seven nodes, it has at least 15, in which case all the parts are

complete binary trees having 15 nodes (h=4); if it has more than

15, it has at least 31; and so on. Thus the Proposition is true

in any case.

Note that if we relax the condition in the proposition

to allow just one part to have a different number of nodes

than all the others, the parts need no longer be complete

binary trees. For example, in

two parts have three nodes each and the third part has one,

but one of the parts is not a complete binary tree. However,

there does always exist a partition of a complete jinary tree

of size 2m-i into complete binary trees, all but (at most)

one of which are of size 2 h-1, for any desired h:m. Indeed,

let m=kh+r, where Orh. Then the parts consist of: a tree

of size 2r-i rooted at the root; 2r trees of size 2h-1 rooted

r levels below the root; 2r+h trees of size 2h-I rooted r+h
levels below the root; 2r + 2 h trees of size 2 h- rooted r+2h

levels below the root; ...; 2 r+(k-1)h trees of size 2 h- rooted

r+(k-l)h levels below the root.

Unfortunately, partitions of a complete binary tree into

connected parts are not always optimal even if the parts are all

of exactly the same size. For example, as shown below, the com-

plete binary tree with 63 nodes can be partitioned into 9 compo-

nents of 7 nodes each, where the maximum number of outlinks from

any component is 5 (arising from component no. 9; the nodes are

labelled with their component numbers). On the other hand, if

we partition this tree into 9 complete binary trees of 7 nodes

each, the tree rooted at the root has 8 outlinks (to the 8 trees

rooted 3 levels below the root); thus the partition into complete

binary trees is not optimal.

I

q

A partition into subtrees is in some sense more "natural"

than a partition in which the components are disconnected and

dispersed far apart. This is because it natural for a large

tree to be simulated by a smaller, similar tree. This also pre-

serves the original tree structure within the components so that

algorithms written for the simulation are more natural in ex-

pressing the flow present in the original larger tree.

If n and p are such that it is not possible to assign com-

plete binary trees to the sets Ni , we can attempt to assign sets

of complete trees to each component. For symmetry, we would

like the complete subtrees in a set Ni to all be of the same size.

This, combined with the fact that nothing is gained by placing

the equal-sized subtrees at different levels (the number of out-

links cannot decrease), and that placing the complete subtrees

"adjacent" to each other preserves the original tree structure

within a component, leads us to consider forming each set N.1

from equally sized complete subtrees at the same level. We

shall refer to such N. as "trapezoidal" blocks.1

To completely specify the shape of a trapezoidal block, we

must specify the number of nodes in its top edge and the number

of its layers. It is possible that differently shaped trapezoidal

blocks can have the same number of nodes. In such cases, the

block with fewest outlinks should be picked.

Suppose that we have two trapezoidal blocks, one with

m nodes in its top edge and Z1 layers deep, and the other

with m2 nodes in its top edge and Z 2 layers deep. Suppose

further that both contain the same number of nodes. Thus

m1 (2Zi-1) = m2 (2Z2_1). Also, assume that m1 >m2; thus Z2>Z1
.

The number of outlinks for the first block is ml(2 l+l)and for

the second it is m 2 (292+1).

Since ml>m2 we have

2 1 m+m > 2Zim - m I + m2 + m 2

> 292m 2 - m 2 + 2m 2

> 2t2m2 + m 2

Hence the first trapezoidal block will have more outlinks than

the second.

Thus, we should use trapezoids that have as many layers

as possible, and tops as small as possible - in other words,

they should consist of as few trees as possible.

The following algorithm determines suitable parameters for

the trapezoid:

m-l
begin i -f ; a - 0;

while i 3 (2 b-1) for some b do

begin a - a+l; i - ri/21

end;

if i = 2b-1 for some b then

begin

number of nodes in top edge = 2;

number of layers = b

end

end

Clearly, the algorithm stops for the least possible value

of a and the highest possible value of b. The condition

i=2 b- for some b is easily detected from the binary represen-

tation of b, and is needed to obtain complete subtrees within

each trapezoid. Note that if p divides 2m-1 evenly, we have

m-
i = --)p = 2m- 1 and the while loop is not executed. We

p

then have a=O, so that the trapezoidal blocks are complete

binary subtrees.

The trapezoidal blocks obtained by this algorithm are not

optimal in the number of outlinks. For example, if p=2,

the following partition of a complete binary tree is obtained:

II

with a penalty of 4,whereas the optimal partition is

with a penalty of 1.

The following algorithm* partitions the n nodes of a com-

plete binary tree T such that the nodes are distributed to the

p processors as evenly as possible, and it gives an upper bound

to the cost (maximum number of outlinks) of partitioning a com-

plete binary tree. jk

Step 1. Find xi {0,} such that t E n xi 2
'p P i=O

where Xk#0. Clearly k=tlog 2tI.

Step 2. To each processor, for each i,l~i~k,such that

xi=l, assign a complete subtree with 2i-i nodes

such that its leaves are also leaves of the ori-

ginal tree T. There are enough leaves in T,

because if xi=l, then we need 2i - leaves for1 k

each processor. Altogether p Z xi 2 i
- leaves

k i=l k
are needed. But p Z xi 2 = (p Z x.2)/2

i=l i=l

pt/2 n/2 r number of leaves in T.

This algorithm is based in part on suggestions by Q. Stout.

Step 3. Let S = number of nonzero xi's, Oifk (snk+l).

Among the unassigned nodes of T, assign s nodes

(in any convenient way) to each of the p pro-

cessors. Now each processor has t nodes, and

there are n-pt unassigned nodes.

Step 4. Choose (arbitrarily) n-pt processors to receive one

more node each. In other words, n-pt processors

have t+l nodes and (t+l)p-n processors have t nodes.

Each of the complete subtrees in step 2 has one outlink

and the number of such complete subtrees in each processor

is fk. Each node assigned in steps 3 and 4 introduces at most

three outlinks. Thus, the total number of outlinks in each

processor is :k+3(s+l)!4k+6=4 log n+6. In general, this
p

cost can often be smaller if in the assignment of nodes in

steps 3 and 4, we are careful in assigning neighboring nodes

to the same processor whenever possible. However, this method

of partitioning does not always result in optimal cost, as the

following example shows; the cost of this partition is 7, aris-

ing from component 9, whereas the partition of this same tree

shown earlier in this section had a cost of only 5.

5 $ 4 4 S

3 3 +-r - I

The above algorithm gives an upper bound on the cost of

partitioning a complete binary tree. The components obtained

are very "nonuniform" in the sense that the components can be

disconnected; the nodes in each component are connected into

graphs of different shapes; and the nodes are all on different

levels of the original tree. The resulting structure is also

not a tree.

I1

II

6. Concluding remarks

In order to simulate a large network N of processors

using a smaller set of processors, a natural approach is to

divide N into parts and let each processor simulate one of

the parts. In order to equalize the workloads of the processors,

the number of nodes of N in the parts should be as equal as possi-

ble, and the numbers of arcs between parts should be as small (and

as equal) as possible. "Natural" partitions that are optimal with

respect to these criteria can be found for certain special N's;

for example, if N is a mesh-connected array, partitioning it into

square blocks is optimal. For general graphs, finding an optimal

partition has exponential cost. We suggest a suboptimal parti-

tioning algorithm that has quadratic complexity. For trees,

an algorithm of linear complexity can be given that minimizes the

number of arcs between parts while keeping the number of nodes

in each part bounded, but it is not obvious how to modify this

algorithm to equalize the number of nodes in the parts. In any

case, in an optimal partition of a tree, the parts in general

are not connected subgraphs. We give a suboptimal algorithm for

partitioning a complete binary tree, and also discuss a class of

"natural" partitions of such a tree into complete binary trees

or into "trapezoidal" sets of such trees.

7

References

1. L. Uhr, Algorithm-Structured Computer Arrays and Networks,
Academic Press, New York, 1984.

2. S. H. Unger, A computer oriented toward spatial problems,
Proc. IRE, 46,1744-1750, 1958.

3. K. E. Batcher, Design of a massively parallel processor,
IEEE Trans. Computers, 29, 836-840, 1980.

4. T. Kushner, A. Y. Wu and A. Rosenfeld, Image processing on
ZMOB, IEEE Trans. Computers, 31, 943-951, 1982.

5. J. A. Lukes, Combinatorial solutions to partitioning prob-
lems, Technical Report No. 34', Stanford Electronics Labora-
tories, Stanford University, 1974.

6. D. E. Knuth, Fundamental Algorithms, Addison-Wesley, Reading,
MA, 1973.

I

B

FILMED

oil 8-84

0 DTIC

*

